Table of contents
Open Table of contents
What I’ve Taken / Experienced Recently
AI in the community is evolving super fast. For example: A code API I wrote on Vercel about a month ago stopped working just last week. I updated it multiple times but faced issues, so I had to restart the project. This wastes computing resources (tokens).
Currently, AI’s capabilities (including my personal limits) cannot fully handle even seemingly simple development tasks, like:
- Building a React-Native frontend.
- Supporting Android (which requires installing and configuring android-studio, very annoying!).
- Setting up the backend, including: Connecting with AI models, and connecting databases for data persistence.
I’ve tried several popular approaches:
- Cursor + Claude/ Gemini/ GPT5 (currently, Gemini’s dev model feels easiest to use).
- Vercel, v0.dev.
- Using Figma for frontend design + backend connection via Supabase - (Love this PostgreSQL traditional SQL database which also supports vector databases.)
Most of the time, I need to use several platforms simultaneously, which is quite challenging. However, Connecting all platforms - Cursor, v0.dev, Figma - to DeepSeek (DeepInfra) is very simple.
Using AI for development-designing, writing/ outputting documents (markdown), and drawing flowcharts (plantUML) flows smoothly and looks really polished, with all in plain text. Truly amazing!
The architecture is cloud-based and ready to use with a small monthly cost of about 200 Candian dollar during the design & dev phase. For production testing, base costs need further evaluation.
Conclusions / Suggestions on Using AI for Design and Development
The design phase must not be ignored or overlooked.
- If the framework, components, and boundaries between components aren’t clearly defined (e.g., frontend code path, environment variable config and pre-requisite software, like
nodejs
,openjdk
etc), - Or if the granularity is inconsistent (e.g., frontend and backend at equal granularity but React-Native and Android are separate levels inside frontend), then development will likely fail and the app won’t run.
- Worse, AI-generated code is basically impossible to debug.
Recommended design process:
- Start from “initial ideas” (brainstorming).
- Define as detailed a specification/ product module description as possible.
- Generate blueprints and technical module designs.
Modules should be as isolated as possible-frontend vs backend, database persistence setup, AI model integration, etc.
Have a clear hierarchical framework concept, from big picture to detailed level, step by step.
Consider DevOps workflow, as a team will possibly be needed for further development, operation, and maintenance (including code and data).
Security, encryption, and authentication are indispensable.
Regardless of scale, a team is necessary. Likely 2–3 people to handle:
- Architecture & design coordination,
- Frontend (Android, iOS, some art),
- Backend (persistent databases, language models).
To fully leverage AI, an open and unrestricted internet environment is required. Otherwise, a lot of time can be wasted online. You know what I mean.
Update to the Management in Chinese
將最近几週的工作,努力,學習,感受簡單彙報一下 (this text message has not been involved with any AI. They’re all from my personal mind)
-
AI 從行業角度,變化飛速。1個月之前,在 Vercel 写的代码 API,从上周就不工作了。更新几次,都有问题。只好重来 New Project。这样浪费计算资源 (token)
-
目前,AI 的能力 (也包括我个人能力限制) 无法”完全”胜任即使看起来很简单的开发工作,比如,(1) 一个 React-Native 的前端,(2) 支持 Android (需要安装配置 android-studio 等。麻烦!),(3) 配置相应后端,包括与 (3.1) 模型对接,和 (3.2) 连接数据库作数据持久化处理
-
我尝试利用目前业界最流行的几种方法:(1) Cursor+ Claude/ Gemini/ GPT5 (目前感觉 Gemini 的开发模型比较好用) (2) Vercel v0.dev (3) Figma 制作前端+ 建立对接后端 Supabase (特别喜欢这个 PostgreSQL 传统 SQL 数据库,同时支持 Vector 标准矢量数据库)。多数时候,需要同时利用几个平台完成。这个状态有些挑战
-
在所有开发平台,Cursor,v0.dev,和 Figma,对接 DeepSeek (DeepInfra) 非常简单
-
利用AI开发,设计/ 编写/ 输出文档 (markdown) 和构画流程图 (plantUML),一气呵成,非常精美。真的太棒了
-
现在设计架构是能利用 cloud,即使用。需要小量投入,每月约千元人民币左右 (在设计开发阶段。如果是测试生产,基础成本需要评估)
利用 AI 设计开发,一些结论/ 建议:
-
设计阶段不能忽略,也不能忽视。如果设计中框架,component 和 component 之间的细节和边界定义不明确 (如,前端代码要放在指定路径,环境变量路径配置,等),还有颗粒度不一致 (如,前端和后端是同等颗粒度。但是前端里面的 React-Native 和 Android 是一级颗粒度。混杂起来是无法工作的),都有可能导致不成功的开发,结果即应用无法跑起来。更糟糕的是,AI 制作的代码基本无法 debug
-
设计流程建议是:从“初始想法” (brainstorming),在“初始想法”上,定义尽可能详尽的 specification/ 产品模块描述。然后生成 blueprint/ 技术模块设计。模块间需要尽可能的隔离,如前后端,持久化数据库配置,对接语言模型,等。需要有非常清楚框架概念,从大到小,一步一步推进。其实,还需要考虑开发 DevOps 流程,因为,未来需要一个团队合作 (进一步)开发,运维 (包括代码和数据的运维)。当然,安全加密认证等,也是不可或缺的
-
实际无论多小,还是需要一个团队的。可能2~3个,分别负责架构统筹设计,前端 (Android, iOS 和部分 Art),后端 (持久化数据库,语言模型)
-
充分利用 AI,需要一个开放自由的网络环境。否则,很容易在网络上,浪费许多时间。你懂的